
friction and heat flux at the stagnation point of a concave obstacle, using relations for a two-dimensional fiat 
plate, accounting for variation in the velocity gradient at the stagnation point of the obstacle, gives underes-  
t imated values (by a factor from 3 to 8 ), compared with the present  results.  

N O T A T I O N  

~, ~, axes of the body-f ixed coordinate system; ~o ,  distance from the obstacle at which the effect of 
the obstacle and the outer  flow is negligibly small; x, y, rectangular coordinate system axes; y ~ ,  thickness 
of viscous layer  on the obstacle; YT, coordinate of the obstacle surface; ~, t ransformed coordinatej t, time; 
~, slope angle of the velocity vector  V~ to the axis of symmetry;  u, v, velocity components along the axes 
~, ~ in the region of interaction of an ideal flow with the obstacle; U, V, velocity components along the x and 
y axes in the obstacle boundary layer;  V~, velocity at section ~ ~ ; U1, gradient of U in direction x; /3, 
velocity gradient at the obstacle stagnation point; p,  density; T, temperature;  Tw, wall temperature;  Too , 
tempera ture  of outer  flow; p, p ressure ;  /~, dynamic viscosity; ~, thermal  conductivity; Cp, specific heat; ~,  
hea t - t ransfer  coefficient; K, curvature of obstacle; 7w, friction on the obstacle surface; qw, heat flux to the 
obstacle surface; Q, H, sizes of computational mesh cell in the direction of the x and T/ axes, respectively; 
At, t ime step; i, j, m, cell numbers in the directions x, 77, andt; k, i teration number; w, relaxation coef- 
ficient; R e  = pV~oo / l~ ,  Reynolds number; P r  = Cp/Z/h, Prandtl  number; Ec = V&(~pT~), Eckert number; 
Nu = ce~ooX, Nusselt numbers. Indices: 0, pa ramete r s  at the outer edge of the boundary layer; f.p, parame-  
t e r s  on a two-dimensional fiat plate, positioned normal to a uniform external s tream; - ,  dimensional value. 
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M E C H A N I S M  O F  B O I L I N G  ON S U B M E R G E D  

S U R F A C E S  W I T H  C A P I L L A R Y - P O R O U S  C O A T I N G  

O. N. M a n ' k o v s k i i ,  O. B. I o f f e ,  
L.  G. F r i d g a r t ,  a n d  A. R. T o l c h i n s k i i  

UDC 536.423.1 

An approximate model is proposed for the process  of boiling in a porous layer.  The model shows 
satisfactory qualitative and quantitative agreement with experimental data over  a wide range of 
heat fluxes. 

Heat- t ransfer  surfaces with capil lary-porous coatings have been arousing much interest  among" r e -  
searchers ,  since boiling seems to occur on them somewhat more  intensely than on uncoated surfaces. In 
part icular ,  it has been noticed that boiling on porous surfaces may occur for very small temperature  differ- 
ences, hence permitt ing the t r ans fe r  of large heat fluxes in thermodynamically favorable conditions. 

The study of this phenomenon is known to present  certain difficulties, since its mechanism is deter-  
mined by hea t - t rans fe r  p rocesses  that occur  inside the s tructure of the capil lary-porous layer,  where they 
are inaccessible to visual observation and direct measurement.  Probably as a result,  the l i terature has so 
far  lacked any general methods allowing the calculation and analysis of this process  on the basis of specified 
proper t ies  of the medium, parameters  of the porous layer,  the character is t ics  of the coating material ,  and 
the tempera ture  difference. Experimental  results  and empirical  correlat ions were presented in [1-3], 
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Fig. 1. Structure  of porous surface:  a) actual; 
b) model representa t ion;  1) porous  layer ;  2) 
supporting surface.  

but these cannot be extended to cases  that differ significantly f rom the conditions of the experiments  in which 
they were  obtained. 

In the presen t  work,  an attempt is  made to construct  a simplified mathemat ica l  model based  on physical  
ideas as to the most  significant aspects  of the p rocess .  If the expeI4mental resul ts  for  boiling in porous  coat-  
ings [1, 2, 4] are analyzed, the following information on the mechanism of the p roces s  is obtained. When a 
liquid is  heated inside a porous layer ,  vapor  is formed and drawn off through certain pores ,  while through 
other  pores ,  on account of the action of  capi l lary  forces ,  new port ions of liquid are drawn into the l aye r  ( Fig. 
l a ) .  What exactly is it that allows high thermal  fluxes to be obtained and also developed bubble boiling to oc-  
cur  at such a low AT (fractions of a degree),  when boiling on surfaces  that have no porous coating requi res  
far  g r ea t e r  superheating before  vapor  bubbles will form and grow ? One explanation is to assume that inside 
the porous  l aye r  there  are  cavit ies containing phase boundaries.  Since these cavities are  large in compar ison 
with ord inary  newly formed vapor  bubbles, vaporizat ion will occur  for  incomparably  sma l l e r  superheating in 
these cavit ies than in the in te r ior  c~ a vapor  bubble. Liquid drawn into the l ayer  by capil lary forces  is heated 
by contact with the granules forming the porous  s t ruc ture ,  which have a higher t empera tu re  than the liquid on 
account of the i r  significant the rmal  conductivity. We est imate  the intensity of this heat t ransfer .  

The liquid motion in the capi l lary channels may be assumed to be laminar .  For  small Reynolds num- 
ber,  the h e a t - t r a n s f e r  coefficient for  l aminar  flow may be determined f rom the equation [6] 

= C ~L , (1) 
d h 

where  C is  a constant depending on the channel geometry ;  for  a c i r cu la r  channel c ross  section, C = 3.65. 
Since channel d iameters  in the cap i l l a ry-porous  l ayer  are  of the o rde r  of 10-3-10 -5 m, the hea t - t r ans fe r  co- 
efficient will be of o r d e r  103-105 W/(m 2- deg). In addition, the hea t - t r ans fe r  surface  is l~Aghly developed. 

Thus,  the high heat fluxes at small  t empera tu re  differences in boiling in porous surfaces  may be ex- 
plained by th ree  fac tors :  

1) the p re sence  inside the l ayer  of phase boundaries ,  reducing the heating neces sa ry  for  vapor  [orrna- 
tion; 

2) the high convective hea t - t r ans fe r  coefficient for  l aminar  motion of a liquid in a capi l lary channel; 

3) the developed surface  of the capi l lary s tructure.  

On the bas is  of the proposed  mechan i sm for  the phenomenon, a porous  l ayer  may be approximately 
represen ted  as a sys tem of communicat ing capi l lar ies  (Fig. lb ) .  So as to simplify the geometry ,  we assume 
that the channels are  c i rcular .  The hypothetical capi l lary l aye r  should be equivalent to the real  porous  l ayer  
in th ree  fundamental r e spec t s :  hydrodynamical ly ,  thermal ly ,  and in t e r m s  of capi l lary uplift. In o rde r  to 
cha rac te r i ze  the capi l lar ies  in relation to these  p roper t i es ,  we will use th ree  d iameters :  d c to descr ibe  the 
capi l lary effect; dh, the equivalent hydraul ic  d iameter ;  and dr, the equivalent thermal  diameter .  

According to [7], the capi l lary effect in the case of a wet layer  can be descr ibed by the value 

dc=0~l 6. 

According to [8], the equivalent hydraul ic  d iamete r  is  

1 ed 
d h . . . .  , 

3 1 - -8  

(2) 

(3) 

2 0 3  



"t 
x \ . \ ,  

I N N I N \  
IN NI 'x  \ 

TO') 

~ , , " ~ \ \ \ ~  x r,, ~" 

Fig. 2. Tempe ra tu r e  profi le  in the wall of the 
equiva/ent capil lary.  

where  c is  the poros i ty  (rat io of  the volume of the cavit ies  to the volurne of the layer).  

The equivalent the rmal  d iamete r  is  de te rmined  f rom the condition that the capi l lar ies  and the pores  
must  have the same volume and surface,  

2 ed 
d r - -  3 I - -  e 2dl~ 

The capi l lary wall  th ickness  5 
ume of the capi l lary  wal ls :  

(4) 

can be determined from the equality of the volume of the granules to the vol- 

Assume that, in stable conditions, one vapo r -d i s cha rge  capi l lary connects with m liquid (vapor-genera t ing)  
capi l lar ies .  The mos t  probable  posi t ion of  the phase boundary would be close to the heated surface,  since it 
is  he re  that conditions a re  pa r t i cu la r ly  favorable for  vapor  formation.  Thus, one center  of vapor  formation 
is made up of (m + 1) capi l lar ies ,  m of which are  filled with liquid over  the whole depth h. We assume that 
heat t r a n s f e r  in the vapo r -d i s cha rge  capi l lary i s  negligibly small.  If  qc is  the heat-f lux density in the vapor -  
generat ing capi l lary,  then the amount of  heat a r r iv ing  at one vapor - fo rmat ion  cen te r  i s  

Q = ~dhhqcm. (6) 

The heat-fl~x density r e f e r r e d  to the smooth sur face  is 

q = QM ~d t hqcm n 24 (l - -  ~) h m = - -  -- ' q c - -  , (7) 
m + l  d m + I  

where  M = n / (m + 1 ) is the number  of vapor - fo rma t ion  centers  pe r  unit area;  n = 4~/vdZh is  the number  of 

capi l lar ies  p e r  unit area. 

If we neglect  iner t ia l  forces ,  s t r e s se s ,  and surface  tension in the formation of bubbles above the liquid 
surface,  the p r e s s u r e  difference ar is ing on account of capi l lary forces  is  equal to the res i s tance  to vapor  
mad liquid motion in the capillaries." 

AP c = AP V ~- AP L . (8) 

Assuming that liquid and vapor  motion in the capi l la r ies  is  laminar ,  we may calculate the p r e s s u r e  difference 

by means  of Po i seu i l l e ' s  formula,  

~ = 12_s, Lh oL, (9) 
,~d~ PL 

Ap v = 128~ h GL m. (10) 

The p r e s s u r e  difference due to capi l lary fo rces  may  be calculated f rom the well-known relation 

~Pc = 40 cos______o0 (11) 
d~ 

Substituting Eqs. (9), (10), and (11) into Eq. (8), and bear ing  in mind that 

GL :~4 hqc , (12) 
t* 
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Fig. 3. Comparison of resu l t s  given by Eq. (19) with the e x p e l -  
mental  data of [2]: a) d = 0 . 3 5 9 m m ;  1) h = 3 . 1 5 m m ;  2) 12.7; 3) 
25.4; b) d = 0 . 5 0 7 m m ;  1) h =3.15  ram; 2) 25.4; c) d = 0 . 5 0 7  
ram; 1) h = 12.7 mm; 2) 38.1. q, W/m~; AT,  ~ 

we find the express ion  

m=1.41.10_8 ~rPvCOS 0 ( _ ~ )2 (  8 )3 Am, (13) 
~qc 

where  Am =/~LPV//~VPL. 

To de te rmine  the heat flux in the capi l la ry  qc, we r eg a rd  its wall, in the f i r s t  approximation,  as a 
rec tangula r  fin of height h, length 7rdh, and thickness  5, having a the rma l  conductivity equal to that of a 
porous  l a ye r  in vacuo Xl ( Fig. 2). We will assume that the t em p e ra tu r e  of the liquid surrounding the fin is 
constant ove r  the height and equal to the saturat ion t e m p e r a t u r e  at the p r e s s u r e  calculated taking into ac- 
count the curva ture  of the meniscus  in the capil lary.  It is  known [9] that,  i f  T s is the saturat ion t empera tu re  
in the volume of the liquid, then the superheat ing due to the curva ture  of the "meniscus (nucleational super-  
heating) is  given approximately  by 

AT* - -  4~Ts = 9.75 aTs (14) 

The  t e m p e r a t u r e  d i f ference at the base  of the fin is  

AT b = ( r  w - -  T s ) - -  AT* -- AT --AT*. (15) 

Fo r  the given assumptions,  the heat flux p e r  unit length of the fin base  is [10] 

=6~, ( 2a )~ (h 2~ 6xz ] _ ] / 6 - ; U ) "  (is, Qc 

In Eq. (16) the hyperbol ic  tangent may be assumed equal to unity since, under  the conditions of the considered 
prob lem,  i t s  argument  is  large.  Refe r r ing  the heat flux to the surface  a rea  of  the capi l lary,  we have 

5 
q~ = ~->,z ] , /  '~Tb. (17) 

2cc 
6k s 

We calculate  ~ f rom Eq. (1) and, a f te r  e l ementa ry  t r ans fo rmat ions ,  we obtain 

2.7 ]o,5 

Substitu~_ng Eq, (18) into Eq. (7) leads finally to 

q __- 64.8(1 - - ~ ) d  --1. ;.L~ z (AT-- ,~T*) r e ' n +  1 : (19) 

where  m can be calculated f rom Eqs. (13) and (17). 

Comparing Eq. (19) with the exper imenta l  data of [2] gives the resu l t s  shown in Fig. 3. As is  evident) 
the model  p rov ides  sa t i s fac tory  agreement  with the r e su l t s  of  all the available s e r i e s  of exper iments  in a 
wide range of heat fluxes. The  general  t r ends  p red ic ted  by the model  for  the dependence of the heat-f lux 
density on all the p a r a m e t e r s  va r i ed  in the exper iments  are  qualitatively co r rec t .  Thus, the dependence of q 
on AT is  l inear  for  m >> 1) i .e . ,  f a r  f rom the  cr i t ica l  region. The empir ica l  co r re la t ion  given in [2] for  the 
exper imenta l  r e su l t s  obtained the re  p rac t i ca l ly  coincides in shape with Eq. (19). 
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Likewise, qualitative comparisons showed the proposed model to be consistent with the experimental 
data of [1, 11, 12] (no quantitative t reatment  was car r ied  out, since the necessary  character is t ics  were not 
available). In  all cases,  the e~zperimental data can be described, with a certain accuracy, by a l inear depen'  
dence ofq on AT. The equations given in [11] also show the same behavior. The only exception is the nearly 
quadratic dependence of q on AT obtained in [3], where the dependence of ~ on AT was found to be close to 
l inear.  An analysis in [3] of the data obtained in [2] revealed a certain nonlinearity of the dependence log q = 
f(log AT}, which is,  in facts clearly visible at low values of AT, and a dependence of a on q, whereas in [2] 
it was assumed that a = const. 

Equation (19) explains th is  phenomenon as the effect of nucleational superheating AT*,  which for the 
experimental conditions of [2], for  example, for d = 0.5 mm, is equal to 0.3~ In this case, at small values 
of AT, it should be assumed that the dependence of q on AT has the form q = AAT + C [see Eq. (19}] and 
is  not l inear  in logarithmic coordinates. 

Thus, although the curvsture of the initial portion of log q = f(log AT) indicates the effect of the heat 
flux on ~, this does not disprove the l inear  charac ter  of the dependence of q on AT and does not allow the 
experimental resul ts  of [3] to be explained. Evidently, the experimental data of [3] must r e fe r  to a phenome- 
non which is qualitatively different from that observed in the other works. It is unlikely that the difference in 
the resul ts  of [3] and [2] can be explained by the different heat conductivities of the layer  mater ials ,  since 
experiments on a layer  of glass balls [1] gave a qualitative picture analogous to that obtained on Monel balls 
[2]. It may be assumed that the process  under consideration is affected by the ratio of the channel diameter  
to the breakaway diameter  of the vapor bubbles, since this ratio was sigrLificantly la rger  in [3] than in [2]. 

Thus, there  are  sufficient grounds to assume that Eq. (19) correct ly  describes the effect of AT on q, 
despite the existence of experiments that disagree with it. 

The effects of the other pa ramete r s  predicted by the model are qualitatively correct  and agree with the 
available experimental data. Thus, experimentally (except for [3]) and in Eq. (19}, an inverse dependence on 
the granule diameter  is  observed. Experiments show that the effect of the depth h on the heat t ransfe r  is 
insignificant for  heat fluxes far  from critical.  The right-hand side of Eq. (19) also does not depend on h for 
m >> 1, It should be noted that in calculating k l ,  following the recommendation of [5], we have assumed that 
kl is  proportional to h U3. Thus, in Eq. (19} the heat flux is, in fact, proportional to h 1/~, i .e. ,  the effect of h 
is very  small. On approaching the cri t ical  region, the te rm m / ( m  +1) begins  to play an appreciable role in 
Eq. (19). The effect of h becomes significant, which is confirmed by experiment. 

In the region of the cri t ical  point, the model gives only qualitative agreement with experiment. As AT 
increases ,  the value of m falls and the curve q( AT ) falls beneath the straight-line dependence. This t rend 
corresponds to the physical picture of the phenomenon, since increase  in AT is associated with increase  in 
resis tance,  and also hydrodynamic closing, of the channels in the porous layer.  However, the quantitative re -  
sults for the cri t ical  heat fluxes that are given by differentiation of Eq. (19) are unsatisfactory. The critical 
heat fluxes and tempera ture  dependences are  much too high. This implies that the resis tance assigned to the 
vupor-generating channels in constructing the model was too low. However, taking into account the complex- 
i ty of the considered process  and also the known inaccuracy following from the assumptions made, the agree- 
ment of Eq. (19} with experimental resul ts  should be regarded as adequate. This indicates that, in broad out- 
line, the mechanism assumed in the analysis of the process  is correct .  

N O T A T I O N  

T, temperature ;  AT, tempera ture  difference; AP, p re s su re  difference; Q, heat flux; q, heat-flux 
density; G, mass  flow rate; X, thermal  conductivity; /~, dynamic viscosity coefficient; p, density; r,  specific 
heat of vaporization; 0, angle of wetting; ~, surface-tension coefficient; d, granule diameter; h, 5, l inear  
dimensions. Indices: c, capillary; l, layer;  L, liquid; V, vapor; s, saturation; b, base. 
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N A T U R A L  T H E R M A L  R A D I A T I O N  O F  H E A T -  

A B S O R B I N G  T H E R M A L  VACUUM  C H A M B E R  

S H I E L D S  

Yu.  V. S v e t l o v ,  S. P .  G o r b a e h e v ,  
A. I. S k o v o r o d k i n ,  and  R. A. S h a g i a k h m e t o v  

UDC 536.3 

A simplified method for computing the natural thermal  radiation of heat-absorbing shields of 
vacuum chambers is elucidated; computational dependences are presented for shields of her-  
ringbone outlines and the influence of the geometric profile character is t ics  on the magnitude 
of the natural radiation is shown. 

The efficiency of the heat-absorbing shield of a thermal  vacuum chamber within which is a radiant en- 
ergy source depends greatly on how small the radiant flux, going into the chamber from the shield is. This 
flux consists of two components: the reflected radiant flux and the natural thermal radiation of the shield. It 
is expedient to examine these components separately for a detailed investigation of the influence of the shield 
on the radiant heat exchange. 

In order  to assure the requisite absoliotivity of the radiant flux, the shields of thermal vacuum cham- 
bers  are ordinarily set up in the form of a cellular construction. Each individual cell of the shield is a spatial 
cavity formed either by adjacent shield prof i les  o r  by several  surfaces of one profile (Fig. la). 

In the general case, the magnitude of the natural thermal  radiation of a cell in the shield is determined 
by computing the complex (radiant and conductive) heat exchange on the basis of zonal methods, for example, 
[2, 3]. As a rule, an awkward i terat ion method of computation is hence used, since the temperature  field in 

~ x t  8 

8 

b 

Fig. 1. Cell of a heat-absorbing shield of herringbone 
profile (a) and analysis of the local angular radiation 
coefficients from the inner fins of the profile (b). 
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